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Abstract: This letter presents a simple phase modulation scheme for 
interrogation of low-coherence interferometry based fiber-tip pressure 
sensors to enable real-time monitoring and miniaturization of the entire 
sensor system. The key idea is to introduce a sinusoidal modulation signal 
and retrieve the sensing cavity length change using a simple algorithm, 
without resorting to any time information. In experiments, phase modulation 
has been achieved by using a silicon-micromachined tunable Fabry-Pérot 
interferometer, which is integrated with a light source and a photodiode onto 
a single chip. Compared with the conventional interrogation methods, this 
scheme possesses the merits of being less susceptible to disturbance, easy 
control and easy miniaturization, making it particularly suitable for sensing 
in constrained spaces and harsh environments. 
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1. Introduction  

Fiber-tip pressure sensors refer to the fiber-optic sensors that construct an extrinsic Fabry-
Pérot (FP) cavity between the tip of an optical fiber and an external mirror. They have 
recently received considerable attention due to the demands of pressure monitoring in 
constrained spaces and harsh environments such as turbo engines [1-3] and human organs [4-
6]. Although miniature pressure sensors have been reported in literature,  some emerging 
advanced applications may not only require the pressure sensors to be small enough to reach 
the regions of interest, but also require the entire sensing system (including both the pressure 
sensors and the interrogation subsystems) to be miniaturized to facilitate in-situ pressure 
sensing [7]. These applications include pressure measurements on rotary blades, in-situ 
pressure monitoring carried out with micro air/underwater vehicles, and implantable or 
portable medical pressure monitoring devices. For these applications, easy miniaturization, 
simple implementation, real-time and reliable measurements become the major concerns. 
Therefore, the control and signal processing should be as simple as possible, the response 
speed should be fast enough to respond to quasi-static pressure changes (typically < 100 Hz), 
and the interrogation method should be robust in the presence of noise and disturbance.  

To interrogate the cavity length change of the sensors in response to the external pressure, 
various methods have been demonstrated. Low-coherence interferometry (LCI) has gained 
increasing popularity as it enables absolute distance measurements [8] while suppressing the 
influences of parasitic cavities and light source instability (e.g., wavelength drift and power 
fluctuations) [7]. Most of the reported LCI-based fiber-tip pressure sensors utilized 
spectrometers or optical spectrum analyzers to obtain the reflection (or transmission) spectrum 
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of the sensing cavity, and the cavity length change is retrieved by using the peak tracking 
technique [5-7, 9, 10]. The use of spectral information presents significant impediments to 
both the miniaturization and the response speed. Although high-speed fiber-optic 
spectrometers have been reported recently [11, 12], miniaturization of these spectrometers still 
remains a challenge. Advanced techniques such as linear demodulation method and phase 
shifting method could be incorporated into the sensor interrogation [13, 14], which enable fast 
detection speed and easy data retrieval by utilizing the optical power signal (not spectral 
signal). However, the linear demodulation method requires the sensor to be operated at a 
quadrature point and thus real-time stabilization of the operating condition is needed. The 
phase shifting method introduces additional phase changes in a controllable manner, usually a 
linear phase ramp [15] or several well-defined phase steps [16-21]. It requires sophisticated 
control of the phase steps and strict synchronization between the modulation and sampling 
[13-21].  

In this letter, we propose and demonstrate a phase modulation scheme that can be used in a 
single-chip integrated LCI sensor system for real-time pressure monitoring. Such scheme 
introduces a sinusoidal phase modulation with an amplitude (i.e., modulation depth) equal to 

or slightly greater than π. The sensing cavity length can be retrieved from the power levels of 
some extremum points in the modulated output waveform. The scheme is implemented by 
using a microfabricated tunable FP filter. The details of this scheme and its advantages and 
uniqueness will be discussed as follows. 

 

 
 
Fig. 1. Schematic setup of sinusoidal phase modulation scheme for low-coherence interrogation 

of the fiber-tip pressure sensors. CP0 and CP1 represents 1 × 2 optical couplers. 

 

2. Design and working principle 

The configuration of the entire sensor system (including a fiber-tip pressure sensor and an 
optical interrogation subsystem) for incorporating the sinusoidal phase modulation scheme is 

shown in Fig. 1. A low-coherence light first passes a 2 × 1 optical coupler (CP0) before 
entering the FP sensing cavity of the pressure sensor. The reflected light then goes to the 
reference interferometer, which employs a tunable FP cavity formed by a cleaved fiber end as 
a partial mirror and a micro-fabricated curved mirror as another mirror. The curved mirror can 
be driven by an electrostatic comb drive actuator to facilitate a tunable cavity length of the 
reference interferometer. The reflected light from the reference interferometer is transmitted to 
a photodetector for optical power detection. Initially, the reference cavity length can be 
adjusted to a desired level by applying a static bias voltage Vb. The dynamic phase modulation 
can be achieved conveniently by driving the curved mirror in resonance with a modulation 

voltage ( ) ( )tfVtV ss 00 2cos π=∆ , where Vs0 represents the amplitude of modulation voltage, t is 
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the time and  f0 is the resonant frequency of the curved mirror. The use of resonant oscillation 

can produce enough displacement (> λ/2) with a small modulation voltage (~ 0.1 V) even 
though the actuator may need a stiff support for higher f0. It is noted that the modulation 
frequency is not limited to the resonance. The sensor system can work well at other 
modulation frequencies beyond or below the resonance as long as the displacement of the 
curved mirror is large enough. 

Based on the output optical power of LCI [13] and the vibrational response of comb drive 
actuator [22], the normalized output power can be expressed as  

 ( ).sincos1)( 00 φττ ′++= ATP  (1) 

here τ is the normalized time and tf02πτ = . T0 is the temporal coherence function and it can 

be regarded as a constant when the cavity length change is small. The variable A represents 

the modulation depth and 0φ ′  stands for the optical phase to be determined. They are related to 

the basic parameters by 

 ,
4

0

00

0
sbVV

gK

Nh
A ⋅=

ζλ
πε

 (2a) 

 ,
2

144 2
0

20
00

00

0 














 ++−+∆=′ sb VV
g

Nh
xLL

ε
λ
π

λ
π

φ  (2b) 

where ε0 is the permittivity of air, N the comb finger number, h the depth of comb finger, g the 

comb finger gap, K0 the system stiffness and ζ the damping factor of the vibrational mirror. L0 

and x0 are the initial lengths of sensing and reference cavity, respectively. ∆L is the change of 
sensing cavity length in response to the external pressure (see Fig. 1). On the right side of Eq. 
(2b), the second term could be set to be 0 by proper choices of Vb and Vs0 in the initial biasing 

so that it yields 00 4 λπφ L∆=′ . In this way, 0φ ′  becomes solely dependent on ∆L. 

The expression in Eq. (1) is valid based on two assumptions. One is 160 <<bs VVζ  

(namely, small-modulation assumption). Under this condition, the harmonic response term 

( )τ2sin  becomes negligible and thus does not appear in Eq. (1). The other assumption is that 

the external pressure is quasi-static, that is, the highest frequency component of sensor 
response is much slower than the modulation frequency (namely, quasi-static assumption). 

According to Eq. (1), if A > π , the total phase ( )0sin φτ ′+A  would experience a change more 

than 2π over one period of modulation. As a result, all the extremum points would appear 
during the modulation (to be discussed later). The output waveform is exemplified in Fig. 2 

with the values T0 = 1, A = 1.1 π and 30 πφ =′ . It can be observed that the waveform has a 

ditch and a hump, whose local extrema occur at τ = -π/2 and +π/2, respectively. The 

corresponding powers are noted as 2π−P  and 2π+P . Another feature observed from Fig. 2 is 

that there exist two symmetric maximum power points with respect to τ = -π/2 and similarly 

two symmetric minimum power points with respect to τ = +π/2. The corresponding powers 
are represented by Pmax and Pmin, respectively. All these featured points can be verified by 

solving 0=τddP . In parametric study, the influences of A and 0φ ′  on the shape of output 

waveform are examined.  It is observed that the value of A determines the relative position of 

the ditch and the hump in the vertical direction. If A ≥ π, the power values corresponding to 
the local minimum of the ditch and the local maximum of the hump start to overlap (i.e., 

22 ππ +− ≤ PP ). This feature of the waveform can be used in experiment to observe whether the 

modulation depth is large enough. With the variation of 0φ ′ , the local extrema of the ditch and 

hump move up or down at the same pace. When A goes larger so that the total phase 

( )0sin φτ ′+A is beyond 2π, the features of waveform become more complicated and messy. 
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This is why the modulation depth is required to be larger than π but preferably only by a small 
amount. It is worth noting that this choice does not restrict the dynamic range of sensor 

response as it is not necessary to maintain πφ 2≤′+A  (in one period of modulation, the term 

0sin φτ ′+A  is changed from 0φ ′+−A  to 0φ ′++A , the range remains to be 2A regardless of the 

value of 0φ ′ ). 

 
Fig. 2. Featured points on the modulated output waveform. 

 

To retrieve 0φ ′  from the received continuous waveform without resorting to any time 

information, both 0φ ′  and A can be determined simultaneously by 
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The solutions of 0φ ′  and A could have multiple values due to the inverse trigonometric 

functions. As the value of A is preset to be slightly larger than π, this restriction helps 

determine the ranges of inverse cosine solutions and thus the values of 0φ ′  and A can be 

determined without ambiguity. A detailed discussion can be found in Appendix. As the values 

of 0φ ′  and A are calculated by subtraction and division of the power levels of the extrema (see 

Eqs. (3a) and (3b)), the common background noise of LCI output is eliminated and thus the 
fluctuation of light source power does not affect the result. As compared to the linear 
demodulation method and the phase shifting method [13-17, 21], this algorithm offers some 
additional advantages, for instance, it does not rely on the time information of the waveform 

and thus avoids the needs of synchronization and time control. As both 0φ ′  and A can be 

determined simultaneously, it does not require a pre-calibration of the modulation depth and 
thus tolerates modulation signal drift during the operation. This is very convenient to practical 
uses and makes it suitable for harsh environment where strong noise and drift of operational 
conditions may exist. Moreover, the data processing is relatively simple as it just keeps 
picking the extrema from the continuous output waveform, without need for filtering 
processes in the time or frequency domain. In experimental implementation, the extremum 
picking can be realized based on two procedures. First, the output data stream is continuously 
differentiated to find the zero-crossing point, which indicates the appearance of an extremum. 
Second, the sequence of appearance of the extrema is already known to be in the sequence of 
maximum, ditch bottom, maximum, minimum, hump top, and minimum (see Fig. 2). Once the 
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first maximum is found, the identities of all the following extrema can be determined. As the 
extremum picking is continuous, in this sense, the sensor measurement is in real time.  

Indeed, similar sinusoidal modulation has been investigated for other purposes in LCI-
based applications such as temporal fringe processing [13, 15] and surface mapping using 
phase-shifting interferometers [23]. The former employs complicated digital filters in the time 
and spectral domains [15]. The latter separates one modulation period into four quarters and 
integrates the optical power during the time interval of each quarter [23]. Both methods 
require fixed modulation depth and frequency, and enforce strict synchronization and precise 
time control. By contrast, the proposed scheme in this letter offers a much simpler solution. In 
the conventional laser-based interferometric sensors, similar phase modulation has also been 
studied in phase-generated carrier (PGC) technique [24-29]. Periodic phase modulation is 
introduced by oscillating a piezoelectrically driven mirror or by altering the laser wavelength. 
The expression of the output power has the similar form to Eq. (1). To demodulate the phase 

term 0φ ′ , the interferometric signal is expanded in Bessel functions to separate into three parts: 

the DC signal, one dependent on 0sinφ ′  and another on 0cosφ ′ . After the signal goes through 

subsequently low-pass filters, differentiation, cross-multiplication, subtraction and integration, 

the phase term 0φ ′  can be obtained without involving any trigonometric or inverse 

trigonometric functions. It demonstrates the advantages of high sensitivity and large dynamic 
range, but it requires cumbersome computation (not in real time) and fixed modulation 
frequency/depth. Most of the early implementations used analog circuits [24, 25]. Recently 
studies using digital signal processing have found the PGC is susceptible to quantization 
noise, laser intensity noise, and second-harmonic distortion [26]. For these reasons, the PGC 
technique is not very suitable for the practical applications. 

 

 
 
Fig. 3. Single-chip integrated optical interrogation subsystem for implementation of the 
sinusoidal phase modulation scheme. (a) Photograph of the chip; and (b) micrograph of the 
micromachined resonant mirror, with a close-up of the mirror shown in the inset. 

3. Experimental verification 

In experimental implementation, the sinusoidal phase modulation scheme is incorporated into 
a miniature optical interrogation subsystem as shown in Fig. 3(a), which integrates a 
micromachined tunable FP filter, a superluminescent light emitting diode (SLED) bare chip, 
and a photodiode bare chip onto a single substrate, together with all the necessary electrical 
and fiber connections. The micromachined tunable FP filter serves as the phase modulator, 
which employs a curved mirror driven by a comb drive actuator as shown in Fig. 3(b) and the 
inset. The micromachined structures are fabricated by deep reactive ion etching using a 

silicon-on-insulator wafer (structural layer 25 µm thick). The curved mirror has a radius of 39 

µm, slightly smaller than the sensing cavity length (designed value 40 µm) to facilitate the 
initial bias. The effective reflectivity is measured to be approximately 4%, yielding a good 
visibility in the interferometric output. Under static actuation, the curved mirror moves away 
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from the fiber end by µm 028.0 2
Vx =∆  (V is the static voltage in unit of volt). The resonant 

frequency measures 2.4 kHz, more than 20 times higher than the targeted maximum frequency 
components of the pressure field (100 Hz). Thus the quasi-static relation is satisfied. The air 

damping factor is approximately 0.013. As it has 11036 4
0 <<×≈ −

bs VVζ , the small-

modulation assumption is valid. 
The fiber-tip pressure sensor is prepared using the same procedures developed in our 

previous work [5]. It consists of a polymer-metal composite diaphragm, a single mode fiber, 
and a glass tube. The glass tube acts as a housing structure to hold the diaphragm and to allow 
for the insertion of the optical fiber.  The fiber has a well-cleaved end-face, serving as a partial 
mirror of a Fabry-Pérot cavity; while the reflective diaphragm serves as another mirror. The 
fabricated sensor has an outer diameter of only 366 µm, making it suitable for many 
applications that have constrained spaces. In experiment, the pressure sensor is characterized 
in a pressure chamber. Under the initial atmospheric pressure, Vb and Vs0 are chosen to be 1.2 
V and 0.18 V, respectively. The waveforms of the modulation voltage and the interferometric 
output are shown in the channels 1 and 2 of Fig. 4. The modulation depth A is approximately 

1.05π. As the external pressure is increased gradually, the local extrema of the ditch and the 
hump move down at the same pace in response to the shortening of the sensing cavity. Such 
behavior agrees well with the theoretical prediction. At a pressure level of 1.5 kPa, the output 
waveform is shown in the channel 3 of Fig. 4. According to Eqs. (3a) and (3b), it can be 
calculated that the sensing cavity experiences a length change of 70 nm. For the calibration 
purpose, the static sensor responses are also measured by tracking the peaks of the reflection 
spectrum by using an optical spectrum analyzer (Ando AQ6319) in the absence of the 
reference cavity. The results obtained with the two methods are plotted in Fig. 5. In both 
measurements, the cavity length decreases almost linearly with respect to the pressure. The 
linear approximations are obtained to be PL 046.0−=∆  for the sinusoidal phase modulation 

scheme and PL 048.0−=∆  for the reflection spectrum method. Here P is the gauge pressure 

with a unit of kPa and ∆L is the cavity length change with a unit of µm. It can be seen that the 
results match closely with a discrepancy of about 4%. 

 

 
 

Fig. 4. Measured waveforms of the modulation voltage signal applied to the micromachined 
resonant mirror and the interferometric outputs in response to different external pressures. 
 

To investigate the influence of the modulation depth, the pressure sensor is subjected to a 
constant pressure (P0 = 8.3 kPa) while the amplitude of modulation voltage is varied. The 

variation of the measured pressure ∆P/P0 in response to the change of modulation depth is 

plotted in Fig. 6. When the modulation depth is increased from 1.004π to 1.293π (i.e., about 

30% of change), the measured pressure is varied with a range of ±3%. It well verifies the 
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theoretical prediction that the modulation depth does not affect the retrieval of phase as long 

as it is maintained to be slightly larger than π. 

 
Fig. 5. Comparison of the pressure sensor responses as measured by the sinusoidal modulation 
scheme and the reflection spectrum method.  
 

 

Fig. 6. Variation of the measured pressure in response to the change of modulation depth. 
 

 

Fig. 7. Variation of the retrieved phase in response to the temperature change. 

 
To examine the reliability of this scheme, the integrated interrogation chip is heated up by 

a thermal electric cooler (TEC) to simulate the environmental disturbance. The pressure 

applied to the sensor is maintained constant.  The temperature change ∆T with respect to the 
room temperature is increased from -11 to 7 K. Under the same Vb and Vs0, the retrieved phase 
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experiences an increase with higher temperature as shown in Fig. 7. It follows a linear 

approximation ∆φ = 0.16 ∆T. Such phase variation might be due to the increase of the comb 
drive’s displacement (i.e., the reference cavity length) when the integrated interrogation chip 
is heated up. Encapsulation and packaging of the chip would alleviate this problem.  

4. Conclusion 

We have demonstrated a unique phase modulation scheme for on-chip optical interrogation of 
low-coherence interferometry based fiber-tip pressure sensors. A phase modulation depth of 

slightly more than π is produced by the resonant oscillation of a silicon-micromachined 
curved mirror and gives rise to the appearance of some features such as ditches and humps in 
the output power waveform.  The power levels can be used to retrieve the sensor response in 
real time using a simple algorithm. This scheme is advantageous over the conventional 
methods as it avoids the quadrature stabilization, time control, and synchronization and 
tolerates the modulation signal drift and environmental disturbance.  

Appendix 

This part will elaborate how to tackle the multi-valued problem of the inverse cosine function 

in the solutions of 0φ ′  and A based on the prior information that A is slightly larger than π. 

Let b1 and b2 be the principal values of the inverse cosine functions, i.e., 

 

,
2

arccos
minmax

minmax2/
1

PP

PPP
b

−

−−
= −π  (A1) 

 .
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Here [ ]π,0, 11 ∈bb . For easy discussion, let 11 ba ±=  and 22 ba ±= . Then, there are  

 

( ) ( ),
2

1
12 aanmA −+−= π  (A3) 

 ( ) ( ).
2

1
120 aanm +++=′ πφ  (A4) 

Here m and n are integer.  
Now it is time to determine the signs of a1 and a2 and the values of m and n. In Eq. (A3), 

the term ( ) 212 aa −  could have four different forms, ( ) 212 bb −− , ( ) 212 bb −+ , 

( ) 212 bb +− , ( ) 212 bb ++ . As it is already known that A is slightly larger than π (i.e., 

δπ +=A , here 0 < δ << π), there are only two situations, one is that the absolute 

( ) δπδδδπ -or   , ,212 −+−=− bb ; the other is that ( ) δπδπδπδ -2or   ,- ,212 +=+ bb . 

Based on these conditions, the signs of a1 and a2 and the value of (m- n) can be determined. 

For example, if ( ) δ−=− 212 bb

 

(the situation in Fig. 4), one can obtain 11 ba += , 22 ba −=  

and ( ) 1=− nm . Then 0φ ′  can be determined except for the term of ( )πnm + . Fortunately, the 

absolute value of 0φ ′  is not very important. Instead, the variation of 0φ ′  with respect to the 

pressure change is of particular interest. As the term ( )πnm + acts as a common background 

for the value of 0φ ′ , it can be simply set to be 0 or any other integer. 

Although the discussion above is not very rigorous in mathematics, it works well in the 
experimental implementation. It is worth noting that such sign determination only needs to be 
done once in the first calculation. The following runs just use the same sign rules, with the 

utilization of phase unwrapping technique to ensure the continuity of 0φ ′ .  
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